Ocean Waves Generation Against the Wind: Fourier-Real Space Energy Pipelines DOES OCEAN LASER EXIST?

Pushkarev Andrei, Zakharov Vladimir

SkolTech, FIAN

dr.push@gmail.com

Overview

Introduction

- 2 Motivation of the research
- Problem statement

5 Experimental evidence

6 Conclusions

•
$$\frac{\partial \varepsilon}{\partial t} + \frac{\partial \omega_k}{\partial \vec{k}} \frac{\partial \varepsilon}{\partial \vec{r}} = S_{nl} + S_{in} + S_{diss}$$

• $\varepsilon = \varepsilon(\vec{r}, \vec{k}, t)$

- S_{nl} nonlinear 4-waves interaction term
- S_{in} wind input
- S_{diss} wave-breaking dissipation
- Basis of operational models WaveWatch, WAM

- Observation of non-stationary limited fetch regime
- Connection to SSS in homogeneous case $\frac{\partial \varepsilon}{\partial t} = S_{nl} + S_{in} + S_{diss}$

• Connection to SSS in stationary case $\frac{\partial \omega_k}{\partial \vec{k}} \frac{\partial \varepsilon}{\partial \vec{r}} = S_{nl} + S_{in} + S_{diss}$

Motivation of the research

Stationary case	Non-stationary case
$\varepsilon = t^{p+q} F(\omega t^q)$	$\varepsilon = \chi^{p+q} F(\omega \chi^q)$
$E \sim t^p \qquad \langle \omega \rangle \sim t^{-q}$	$E \sim \chi^p \qquad \langle \omega \rangle \sim t^{-q}$
9 <i>q</i> -2 <i>p</i> =1	10q - 2p = 1
p = 10/7 $q = 10/7$	p=1 $q=3/10$
s=4/3	s=4/3

- $\frac{\partial \varepsilon}{\partial t} + \frac{1}{2} \frac{\omega_k}{k} \cos \theta \frac{\partial \varepsilon}{\partial x} = S_{nl} + S_{in} + S_{diss}$
- Exact S_{NL}
- ZRP (Zakharov, Resio, Pushkarev 2010) forcing
- Dissipation spectral tail $\sim \omega_k^{-5}$ starting from $f_{diss} = 1.1$ Hz
- Channel of 40 km width: La-Manche
- $\bullet~40$ points in real space, 10° angular resolution, 72 frequencies
- wind 10 m/sec blowing from France to UK

Problem statement

Problem statement

Problem statement

- thick solid line total
- dotted line in the wind direction
- dash-dotted line normal to the wind
- dashed line against the wind
- dotted line not along the wind

17 / 22

Experimental evidence

CONOCO PHILLIPS Ecofisk platform

A. Simanesew et al., 2017

-100 0 100 θ [deg]

Experimental evidence

Outer Banks, Duck, NC

C. Long, D. Resio, 2008

Experimental evidence

Nonlinear Ocean Waves Amplifier NOWA

Conclusions

- Wave turbulence splits into 2 regimes in space and time:
 - Initial dual self-similar
 - Subsequent mix of self-similar wind sea and quazi-monochromatic waves orthogonal to the wind
- ② Initial self-similar regime is self-similar threshold-like propagation
- Subsequent regime works as Nonlinear Ocean Waves Amplifier (NOWA)
- The system asymptotically evolves into stationary mixed state of wind sea and quasi-monochromatic waves orthogonal to the wind waves, slating at universal 15° closer to the origination shore
- Laser-like radiation is apparently the attractor of complex nonlinear wave system
- The obtained results are applicable to half-open ocean